生物复杂网络motif发现是一种研究生物网络的重要方法,它基于复杂网络的理论研究,以新的视角来研究生命现象和生命机制,但是在处理较大的网络规模或者需挖掘较大的motif时计算效率低。针对这个问题,在现有串行网络motif发现算法ESU的基础上,提出一种基于消息传递接口(MPI)的并行化ESU算法。该方法在ESU计算过程中优化了节点值以解决节点值依赖问题,并以ESU算法的子图发现策略统计各节点子图数,利用动态规划策略寻找最佳节点分配策略以解决负载不均衡问题。模拟网络数据和真实生物网络数据的实验结果表明,并行化ESU算法优化了节点值依赖问题,实现了基于动态规划的负载均衡策略,其运行时间比串行算法缩短了90%,并且该并行算法对不同类型不同规模的网络都具有较强的适用性,有效地提高了网络motif发现问题的计算效率。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !