现代信息社会中,人们对宽带移动通信系统的数据需求量日益增长。为此,
未来宽带移动通信系统必须提供更高的传输速率和更优的服务质量。MIMO技术
能够利用信号的空时频域特性,可以很好地对抗平坦衰落信道,但对频率选择性
信道却无能为力,而OFDM技术可以将频率选择性衰落转化为平坦衰落,MIMO和OFDM两种技术的结合和相互补充,既可以很好地解决未来无线宽带通信系统中信道多径衰落和带宽效率的问题,又能够提高系统容量和传输可靠性,因此采用MIMO技术的OFDM系统是现代移动通信的核心技术。本文首先介绍正交频分复用(OFDM) 技术和多输入多输出(MIMO)系统的基本原理,简述MIMO-0OFDM技术及其特点,并初步探讨了MIMO-OFDM 系统的关键技术。
正交频分复用(Orthogonal Frequency Division Multiplexing OFDM)是一种特殊的多载波传输方案,它可以被看作是一种调制技术,也可以被当作是一种复用技术。多载波传输把数据流分解成若干比特流,这样每个子数据将具有低得多的比特速率,用这样的低比特速率形成的低速率多状态符号去调制相应的子载波,这构成了多个低速率符号并行发送的传输系统。多输入多输出(MIMO)技术是指利用多发送和多接收天线进行空间分集的技术,是无限移动通信领域智能天线技术的重大突破。在无线通信领域,对MIMO的研究源于对多个天线阵元空间分集的性能研究。从20世纪80年代开始,研究学者发现与合并技术结合的多天线空间分集可进一步改善无线链路性能并增加系统容量,Salzzai 研究了单用户MIMO高斯信道,以两径传播信道模型分析了空间分集对信道容量和容量分布的影响。Winters讨论了干扰受限的无线系统中,利用多天线空间分集所能带来的容量增益,并明确地指出了增加分集天线数目可以增加系统容量。
OFDM的基本原理是将高速信息数据编码后分配到并行的N个相互正交的载波上,每个载波上的调制速率很低(1/N),调制符号的持续间隔远大于信道的时间扩散,从而能够在具有较大失真和突发性脉冲干扰环境下对传输的数字信号提供有效地保护。OFDM对多径时延扩散不敏感,若信号占用带宽大于信道相干带宽,则多径效应使信号的某些频率分量增强,某些频率分量减弱( 频率选择性衰落)。OFDM的频域编码和交织在分散并行的数据之间建立了联系。这样,由部分衰落或干扰而遭到破坏的数据,可以通过频率分量增强部分的接收的数据得以恢复,即实现频率分集。OFDM增强了抗频率选择性衰落和抗窄带干扰的能力。在单载波系统中,单个衰落或者干扰可能导致整个链路不可用,但在多载波的OFDM系统中,只会有一小部分载波受影响。此外,纠错码的使用还可以帮助其恢复一-些载波上的信息。通过合理地挑选子载波位置,可以使OFDM的频谱波形保持平坦,同时保证了各载波之间的正交。
以下我将从三个方面对OFDM的原理及实现进行论述。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !