同时定位与地图构建(SLAM)作为机器人领域的硏究热点,近年来取得了快速发展,但多数SLAM方法未考虑应用场景中的动态或可移动目标。针对该问题,提出一种适用于动态场景的SLAM方法。将基于深度学习的目标检测算法引入到经典ORB_SLAM2方法中,将特征点分为潜在动态特征点和非潜在动态特征点,基于非潜在动态特征点计算运动模型,筛选岀应用场景中的静态特征点并实现位姿跟踪,利用非潜在动态特征点中的静态特征点进行地图构建。KITⅠ和TUM数据集上的实验结果表明,与 ORB SLAM2系统相比,该方法能够提高跟踪轨迹精度与地图的适用性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !