当前的多核学习方法结合了不同核函数在对数据的物理特性表示上的能力,但在风格仳数据集中不能充分利用样本中所隐含的风格信息。由此,提岀应用于风格化数据的基于多核学习的风格正则化最小二乘支持向量机(MK- SRESSⅥM)。算法利用风格转换矩阵表示包含在样本中的风格信息,并在目标函数中对其进行正则化处理,通过常用的交替优化方法对目标函数进行优化,在迭代过程中同步更新风格转换矩阵和分类器参数。为在预测过程中利用已学习的风格信息,在传统预测方法中増加了两种新的规则,在分类之前预先使用风格转换矩阵对样本风格进行标准化处理。所提岀的分类器不仅利用了现有多核学习算法在表示样本的物理特征方面的优势,同时有效挖掘了数据集内包含的风格信息以提高分类性能,在风格仳数据集中的实验结果证明了算法的有效性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !