针对如何高效地识别出视频中具有代表性的内容问题,提出了一种对不同的视频帧赋予不同重要性的视频摘要算法。首先使用长短期记忆网络来建模视频序列的时序关系,然后利用自注意力机制建模视频中不同帧的重要性程度并提取全局特征,最后通过每一帧回归得到的重要性得分进行采样,并使用强化学习策略优化模型参数。其中,强化学习的动作定义为每一帧选或者不选,状态定义为当前这个视频的选择情况,反馈信号使用多样性和代表性代价。在2个公开数据集 Summe和 Tvsum中进行视频摘要实验,并使用F-度量来衡量这2个数据集上不同视频摘要算法的准确度,实验结果表明,提出的视频摘要算法结果要优于其他算法。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !