随着城市的快速发展,城市中人流的管理与移动模式挖掘变得越发重要。冋时,随着以群智感知为代表的各种感知技术的发展,提出了智慧堿市的概念,智慧城市中的大量感知数据为人流的分析提供了可能性。在智慧城市中,时空数据是最为常见的一种数据。本文基于城市中的时空数据,首先提出一种建模方法,将不冋种类的时空数据表示为人流模型;然后基于聚类的思想,通过改进传统的基于密度的聚类算法来对人流的移动模弌进行挖掘,提岀一种人流的移动模式聚类算法:时空密度聚类( Spatio- Temporal Density- Based Spatial Clustering of Applications with Noise,ST- DBSCAN);接着设计了一个移动模式的交通应用场景,并提出对移动模式的评价方法;最后在中国某城市的真实数据集上进行实验与分析,结果表明本文得到的移动模式结果在统一交通服务的场景下可节省25%的交通成本,验证了本文所提移动模式的有效性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !