基于多源社交网络上的用户信息实现跨网络链路预测具有重要的意义,有助于进行用户推荐、行为分析、偏好推荐。传统的链路预测技术仅考虑社交网络上的局部结构特征,有些网络规模庞大、节点稀疏、存在大量孤立点,易导致建模困难、计算效率低等问题。基于此,提出了一种基于元路径选择和矩阵分解的跨社交网络链路预测方法。首先,根据跨社交网络中用户间的社会关系构建一个网络图;然后,利用元路径的节点活跃度和边的活跃度自动提取特征;接下来,利用矩阵分解将目标类型对象相关的元路径信息在低维空间上显示;最后,利用集成分类方法对链接模型进行优化。实验数据表明,提岀的链路预测方法具有较髙的准确性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !