针对癫痫脑电信号的检测问题,提出一种基于可调Q因子小波变换和迁移学习的癫痫脑电信号检测方法。首先,对EEG信号进行可调Q因子小波变换,并选择能量差异较大的子带进行部分重构,重排重构信号,将其表示为二维彩色图像数据;其次,通过对现有的癫痫发作自动检测算法和深度可分离卷积网络Ⅹ ception模型的分析,使用 Imagenet数据集分类的预训练模型参数进行网络参数初始仳,得到深度可分离卷积网络Ⅹ ception的预训练模型;最后,利用迁移学习方法将 Xception模型的预训练结釆迁移至癲痫发作自动检测任务。所提方法在BONN癫痫数据集上的准确度达到99.37%,敏感度达到100%,特异度达到98.48%,证明了该模型在癫痫发作自动检测任务上具有良妤的泛化能力。与传统检测方法和其他深度学习方法相比,所提自动检测方法达到了较高的准确率,避免了人工设计和提取特征的过程,具有较好的应用价值。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !