描述
在云计算接手了大部分计算任务的当下,边缘计算也在萌芽。与计算资源和服务都放在数据中心的云计算相比,如果在算力和延迟得以保证的情况下,边缘端的计算反而能给用户带来更好的体验。为此,一众半导体公司开始探索边缘计算芯片,为AI/ML等技术提供边缘端的计算助力。
谷歌Edge TPU
Edge TPU / 谷歌
Edge TPU是谷歌专为边缘推理打造的ASIC芯片,这也是谷歌除了Cloud TPU和Google Cloud两大云端产品外,主打边缘计算的产品。在隐私/机密以及低延迟、小带宽等因素的限制下,不少应用并不适合上云,所以为边缘端提供AI推理计算就成了解决需求的思路。而Edge TPU的大小甚至不及一个硬币,无疑可以用于广泛的AI边缘部署。
Coral加速器模组 / 谷歌
谷歌更是搭建了一个本地AI平台Coral,提供一系列硬件、软件工具和预编译的模型,帮助开发者构建具备本地AI能力的设备。以Coral加速器模组为例,这是一个MCM模组,可以用于高速推理机器学习模型。该模组内置了Edge TPU ML加速器,并集成了电源管理,支持PCIe 2.0x1或USB 2.0的接口,INT8精度下的最高算力可达4 Tops,功耗达到2W。最重要的是其大小只有15x10x1.5mm。
此外,谷歌已经开始在手机芯片Tensor中集成TPU,而Tensor中的TPU已经达到了5W的功耗。考虑到谷歌除了手机以外,已经开始进军智能穿戴和智能家居等一系列物联网市场,在谷歌自己的AI生态下,想必也会进一步扩展Edge TPU的性能表现。
九天睿芯 ADA200
考虑到冯诺依曼架构在功耗与速度上的劣势,现在不少半导体公司都开始探索存算一体的全新架构。九天睿芯也是其中一个参与者,其ADA系列芯片甚至加入了感知这一维度,做到了模拟感知前处理+模数混合存内计算的感存算一体架构,直接在内存中进行混合信号计算。
ADA100 / 九天睿芯
根据九天睿芯官网的描述,ADA100系列是主打超低功耗低算力的传感器处理芯片,等效算力达到1Gops,最低功耗只有20μW,与其他数字芯片相比可以说是降维打击了,适用于可穿戴等AIoT设备。ADA100已于去年11月量产,将于今年批量出货。
ADA200 / 九天睿芯
而ADA200系列则是九天睿芯主打的中低算力芯片,其算力范围在1到2 Tops之间,可以用于低功耗无线摄像头、AR/VR和手机平板这类对算力要求更高一截的场景,该芯片预计今年年底量产。
AIStorm Mantis
在AI掀起的潮流下,不少厂商打上了传感器的主意。这点在TWS耳机、智能眼镜等小型智能化设备中尤为明显,毕竟如果在CMOS图像传感器或MEMS音频传感器上提供足够的边缘算力,就可以省去集成各类AI加速器的烦恼。
比如在传统的CMOS图像传感器方案中,像素阵列传输给源极跟随器,在经过ADC、ISP和MIPI SerDes,将其输出给数字AI,再经过MCU、GPU、DSP或FPGA的处理才能生成事件,如此数字化的过程使得延迟、功耗和成本都高出了一截。
Mantis AIS SoC / AIStorm
为了解决这个问题,初创企业AIStorm的解决方案就是将AI集成到传感器中。以他们的Mantis AIS SoC为例,该方案可将传感器变为一个模拟电荷域AI的输入层,Mantis直接接受传感器数据而无需数字化,再用ANN网络中的模拟神经元完成乘加等运算,最终生成一个决定输出。
Mantis用不到多先进的工艺,现有的产品只用到了高塔半导体的180nm节点和Dongbu的90nm节点,却依然可以在始终开启的情况下做到15 μW的功耗。虽然Mantis图像传感器只有96x96的像素分辨率,但这对于某些小型化应用来说已经足够,何况AIStorm面向的市场也仅仅只是简单低成本的物联网设备。此外,AIStorm也在开发支持QVGA和全高清分辨率的升级版本。
去年AIStorm也宣布与楼氏电子达成合作,一同开发低功耗高性能的音频解决方案,直接为模拟域接收音频数据,让TWS之类的小型音频设备在极低功率水平下也能完成AI降噪、算法声音增强等高级信号处理任务。
小结
从以上这些边缘计算芯片可以看出,传统的架构在边缘端已经不再是主流。无论是延迟敏感还是高算力要求的应用,都在推进边缘计算芯片在架构上做出创新。在这些芯片赋能的多接入边缘计算下,边缘计算将为云端计算分担一部分任务,更好地服务终端用户。
打开APP阅读更多精彩内容