×

PyTorch教程之从零开始的递归神经网络实现

消耗积分:0 | 格式:pdf | 大小:0.36 MB | 2023-06-05

哈哈哈

分享资料个

我们现在准备好从头开始实施 RNN。特别是,我们将训练此 RNN 作为字符级语言模型(参见 第 9.4 节),并按照第 9.2 节中概述的数据处理步骤,在由 HG Wells 的《时间机器》的整个文本组成的语料库上对其进行训练. 我们首先加载数据集。

%matplotlib inline
import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
%matplotlib inline
import math
from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()
%matplotlib inline
import math
import jax
from flax import linen as nn
from jax import numpy as jnp
from d2l import jax as d2l
%matplotlib inline
import math
import tensorflow as tf
from d2l import tensorflow as d2l

9.5.1. 循环神经网络模型

我们首先定义一个类来实现 RNN 模型(第 9.4.2 节)。请注意,隐藏单元的数量num_hiddens是一个可调的超参数。

class RNNScratch(d2l.Module): #@save
  """The RNN model implemented from scratch."""
  def __init__(self, num_inputs, num_hiddens, sigma=0.01):
    super().__init__()
    self.save_hyperparameters()
    self.W_xh = nn.Parameter(
      torch.randn(num_inputs, num_hiddens) * sigma)
    self.W_hh = nn.Parameter(
      torch.randn(num_hiddens, num_hiddens) * sigma)
    self.b_h = nn.Parameter(torch.zeros(num_hiddens))
class RNNScratch(d2l.Module): #@save
  """The RNN model implemented from scratch."""
  def __init__(self, num_inputs, num_hiddens, sigma=0.01):
    super().__init__()
    self.save_hyperparameters()
    self.W_xh = np.random.randn(num_inputs, num_hiddens) * sigma
    self.W_hh = np.random.randn(
      num_hiddens, num_hiddens) * sigma
    self.b_h = np.zeros(num_hiddens)
class RNNScratch(nn.Module): #@save
  """The RNN model implemented from scratch."""
  num_inputs: int
  num_hiddens: int
  sigma: float = 0.01

  def setup(self):
    self.W_xh = self.param('W_xh', nn.initializers.normal(self.sigma),
                (self.num_inputs, self.num_hiddens))
    self.W_hh = self.param('W_hh', nn.initializers.normal(self.sigma),
                (self.num_hiddens, self.num_hiddens))
    self.b_h = self.param('b_h', nn.initializers.zeros, (self.num_hiddens))
class RNNScratch(d2l.Module): #@save
  """The RNN model implemented from scratch."""
  def __init__(self, num_inputs, num_hiddens, sigma=0.01):
    super().__init__()
    self.save_hyperparameters()
    self.W_xh = tf.Variable(tf.random.normal(
      (num_inputs, num_hiddens)) * sigma)
    self.W_hh = tf.Variable(tf.random.normal(
      (num_hiddens, num_hiddens)) * sigma)
    self.b_h = tf.Variable(tf.zeros(num_hiddens))

下面的方法forward定义了如何计算任何时间步的输出和隐藏状态,给定当前输入和模型在前一个时间步的状态。请注意,RNN 模型循环遍历 的最外层维度inputs,一次更新隐藏状态。这里的模型使用了tanh激活函数(第 5.1.2.3 节)。

@d2l.add_to_class(RNNScratch) #@save
def forward(self, inputs, state=None):
  if state is None:
    # Initial state with shape: (batch_size, num_hiddens)
    state = torch.zeros((inputs.shape[1], self.num_hiddens),
             device=inputs.device)
  else:
    state, = state
  outputs = []
  for X in inputs: # Shape of inputs: (num_steps, batch_size, num_inputs)
    state = torch.tanh(torch.matmul(X, self.W_xh) +
             torch.matmul(state, self.W_hh) + self.b_h)
    outputs.append(state)
  return outputs, state
@d2l.add_to_class(RNNScratch) #@save
def forward(self, inputs, state=None):
  if state is None:
    # Initial state with shape: (batch_size, num_hiddens)
    state = np.zeros((inputs.shape[1], self.num_hiddens),
             ctx=inputs.ctx)
  else:
    state, = state
  outputs = []
  for X in inputs: # Shape of inputs: (num_steps, batch_size, num_inputs)
    state = np.tanh(np.dot(X, self.W_xh) +
             np.dot(state, self.W_hh) + self.b_h)
    outputs.append(state)
  return outputs, state
@d2l.add_to_class(RNNScratch) #@save
def __call__(self, inputs, state=None):
  if state is not None:
    state, = state
  outputs = []
  for X in inputs: # Shape of inputs: (num_steps, batch_size, num_inputs)
    state = jnp.tanh(jnp.matmul(X, self.W_xh) + (
      jnp.matmul(state, self.W_hh) if state is not None else 0)
             + self.b_h)
    outputs.append(state)
  return outputs, state
@d2l.add_to_class(RNNScratch) #@save
def forward(self, inputs, state=None):
  if state is None:
    # Initial state with shape: (batch_size, num_hiddens)
    state = tf.zeros((inputs.shape[1], self.num_hiddens))
  else:
    state, = state
    state = tf.reshape(state, (-1, self.num_hiddens))
  outputs = []
  for X in inputs: # Shape of inputs: (num_steps, batch_size, num_inputs)
    state = tf.tanh(tf.matmul(X, self.W_xh) +
             tf.matmul(state, self.W_hh) + self.b_h)
    outputs.append(state)
  return outputs, state

我们可以将一小批输入序列输入 RNN 模型,如下所示。

batch_size, num_inputs, num_hiddens, num_steps = 2, 16, 32, 100
rnn = RNNScratch(num_inputs, num_hiddens)
X = torch.ones((num_steps, batch_size, num_inputs))
outputs, state = rnn(X)
batch_size, num_inputs, num_hiddens, num_steps = 2, 16, 32, 100
rnn = RNNScratch(num_inputs, num_hiddens)
X = np.ones((num_steps, batch_size, num_inputs))
outputs, state = rnn(X)
batch_size, num_inputs, num_hiddens, num_steps = 2, 16, 32, 100
rnn = RNNScratch(num_inputs, num_hiddens)
X = jnp.ones((num_steps, batch_size, num_inputs))
(output

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !

'+ '

'+ '

'+ ''+ '
'+ ''+ ''+ '
'+ ''+ '' ); $.get('/article/vipdownload/aid/'+webid,function(data){ if(data.code ==5){ $(pop_this).attr('href',"/login/index.html"); return false } if(data.code == 2){ //跳转到VIP升级页面 window.location.href="//m.lene-v.com/vip/index?aid=" + webid return false } //是会员 if (data.code > 0) { $('body').append(htmlSetNormalDownload); var getWidth=$("#poplayer").width(); $("#poplayer").css("margin-left","-"+getWidth/2+"px"); $('#tips').html(data.msg) $('.download_confirm').click(function(){ $('#dialog').remove(); }) } else { var down_url = $('#vipdownload').attr('data-url'); isBindAnalysisForm(pop_this, down_url, 1) } }); }); //是否开通VIP $.get('/article/vipdownload/aid/'+webid,function(data){ if(data.code == 2 || data.code ==5){ //跳转到VIP升级页面 $('#vipdownload>span').text("开通VIP 免费下载") return false }else{ // 待续费 if(data.code == 3) { vipExpiredInfo.ifVipExpired = true vipExpiredInfo.vipExpiredDate = data.data.endoftime } $('#vipdownload .icon-vip-tips').remove() $('#vipdownload>span').text("VIP免积分下载") } }); }).on("click",".download_cancel",function(){ $('#dialog').remove(); }) var setWeixinShare={};//定义默认的微信分享信息,页面如果要自定义分享,直接更改此变量即可 if(window.navigator.userAgent.toLowerCase().match(/MicroMessenger/i) == 'micromessenger'){ var d={ title:'PyTorch教程之从零开始的递归神经网络实现',//标题 desc:$('[name=description]').attr("content"), //描述 imgUrl:'https://'+location.host+'/static/images/ele-logo.png',// 分享图标,默认是logo link:'',//链接 type:'',// 分享类型,music、video或link,不填默认为link dataUrl:'',//如果type是music或video,则要提供数据链接,默认为空 success:'', // 用户确认分享后执行的回调函数 cancel:''// 用户取消分享后执行的回调函数 } setWeixinShare=$.extend(d,setWeixinShare); $.ajax({ url:"//www.lene-v.com/app/wechat/index.php?s=Home/ShareConfig/index", data:"share_url="+encodeURIComponent(location.href)+"&format=jsonp&domain=m", type:'get', dataType:'jsonp', success:function(res){ if(res.status!="successed"){ return false; } $.getScript('https://res.wx.qq.com/open/js/jweixin-1.0.0.js',function(result,status){ if(status!="success"){ return false; } var getWxCfg=res.data; wx.config({ //debug: true, // 开启调试模式,调用的所有api的返回值会在客户端alert出来,若要查看传入的参数,可以在pc端打开,参数信息会通过log打出,仅在pc端时才会打印。 appId:getWxCfg.appId, // 必填,公众号的唯一标识 timestamp:getWxCfg.timestamp, // 必填,生成签名的时间戳 nonceStr:getWxCfg.nonceStr, // 必填,生成签名的随机串 signature:getWxCfg.signature,// 必填,签名,见附录1 jsApiList:['onMenuShareTimeline','onMenuShareAppMessage','onMenuShareQQ','onMenuShareWeibo','onMenuShareQZone'] // 必填,需要使用的JS接口列表,所有JS接口列表见附录2 }); wx.ready(function(){ //获取“分享到朋友圈”按钮点击状态及自定义分享内容接口 wx.onMenuShareTimeline({ title: setWeixinShare.title, // 分享标题 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享给朋友”按钮点击状态及自定义分享内容接口 wx.onMenuShareAppMessage({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 type: setWeixinShare.type, // 分享类型,music、video或link,不填默认为link dataUrl: setWeixinShare.dataUrl, // 如果type是music或video,则要提供数据链接,默认为空 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到QQ”按钮点击状态及自定义分享内容接口 wx.onMenuShareQQ({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到腾讯微博”按钮点击状态及自定义分享内容接口 wx.onMenuShareWeibo({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到QQ空间”按钮点击状态及自定义分享内容接口 wx.onMenuShareQZone({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); }); }); } }); } function openX_ad(posterid, htmlid, width, height) { if ($(htmlid).length > 0) { var randomnumber = Math.random(); var now_url = encodeURIComponent(window.location.href); var ga = document.createElement('iframe'); ga.src = 'https://www1.elecfans.com/www/delivery/myafr.php?target=_blank&cb=' + randomnumber + '&zoneid=' + posterid+'&prefer='+now_url; ga.width = width; ga.height = height; ga.frameBorder = 0; ga.scrolling = 'no'; var s = $(htmlid).append(ga); } } openX_ad(828, '#berry-300', 300, 250);