对云存储系统中的大数据进行优化聚类设计,降低存储开销,提高数据管理和调度能力,传统方法中对云存储大数据聚类方法采用量子进化方法,当量子群个体存在非线性偏移时,数据聚类存在局部收敛,导致聚类准确度降低。提出一种基于优化粒子群算法的云存储中大数据优化聚类算法,进行了云存储大数据聚类的原理分析,在传统的模糊C均值聚类的基础上,采用粒子群聚类算法进行大数据聚类算法改进设计,把数据的分割转化为对空间的分割,得到云存储系统中海量数据的模糊聚类中心矢量,采用粒子群聚类方法对聚类数据的离散样本进行动态分配,得到数据聚类的信息素浓度,结合粒子群优化聚类的约束条件,求得云存储中大数据聚类的中心最优解。仿真结果表明,采用该算法进行云存储中大数据优化粒子群聚类,数据聚类的聚类准确度高,收敛性能较好,能在较短的迭代步数下计算得到最优解,在模式识别等领域展示了较好的应用价值。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !