在任何高速数字电路设计中,处理噪音和电磁干扰(EMI)都是必然的挑战。处理音视讯和通讯讯号的数字讯号处理(DSP)系统特别容易遭受这些干扰,设计时应该及早厘清潜在的噪音和干扰源,并及早采取措施将这些干扰降到最小。良好的规划将减少除错阶段中的大量时间和工作反复,可节省整体设计时间和成本。
如今,最快的DSP的内部频率速率高达数GHz,而发射和接收讯号的频率高达数百 MHz。这些高速开关讯号将会产生大量的噪音和干扰,将影响系统性能并产生电平很高的EMI。而DSP系统也变得更加复杂,如具有音视讯接口、LCD和无线通讯功能,以太网络和USB控制器、电源、振荡器、驱动控制以及其它各种电路,它们都将产生噪音,也都会受到相邻零组件的影响。音视讯系统中特别容易产生这些问题,因为噪音会引起微妙的性能衰减,但这几乎不会显露在离散的数据之中。
重点是要从设计开始就着手解决噪音和干扰问题。许多设计第一次都没有通过联邦通讯委员会(FCC)的电磁兼容测试。如果在早期设计中,在低噪音和低干扰设计方法上花费一些时间,就会减少后续阶段的重新设计成本和产品上市时间的延迟。因此,从设计一开始,开发工程师就应该着眼于:
1. 选用在动态负载条件下具有低开关噪音的电源;
2. 将高速讯号线间的串扰降到最小;
3. 高频和低频退耦;
4. 具有最小传输线效应的优良讯号完整性;
如果实现了这些目标,开发工程师就能有效避免噪音和EMI方面的缺陷。
噪音的影响及控制
对于高速DSP而言,降低噪音是最重要的设计准则之一。来自任何噪声源的过大噪音,都会导致随机逻辑和锁相环(PLL)失效,降低可靠性。还会导致影响FCC认证测试的辐射干扰。此外,除错一个噪音很大的系统是极端困难的;因此,要消除噪音──若能彻底消除的话──将要求在电路板设计中花费大量心血。
在音视讯系统中,即便是比较小的干扰,也会对最终产品的性能产生显著影响。例如,音讯撷取和播放系统中,性能将取决于所用音讯编译码的质量、电源噪音、PCB布线质量、相邻电路间的串扰大小等。而且,采样频率的稳定度要求也非常高,以避免出现不希望的杂音,如在播放和撷取时的‘砰砰’声和‘喀嚓’声。
在视讯系统中,主要的挑战是消除色彩失真、60Hz‘嗡嗡’声以及音讯敲击声。这些对高质量视讯的系统都是有害的,例如安全监控方面的应用。实际上,上述这些问题通常都与视讯电路板的设计不良有关,包括:电源噪音传到视讯的DAC输出上;音讯播放引起电源瞬变;音讯讯号耦合到高阻抗的视讯电路讯号在线。
这些典型的视讯问题源包括:同步和画素频率的过冲和欠冲;影响色彩的编译码和画素频率抖动;缺少端接电阻的影像失真;音视讯隔离较差引起的闪烁。
音视讯应用容易产生的噪音干扰问题,对于所有要求具有很低误码率的通讯系统来说也是常见的。在通讯系统中,辐射不仅仅产生EMI问题,还会阻塞其它的通讯讯息信道,引起伪讯息信道检测。采用适当的电路板设计、屏蔽技术以及RF和混合的模拟/数字讯号的隔离等技术,就可以解决这些挑战。
在高速DSP系统中有许多潜在的开关噪声源,包括:讯号线间的串扰;传输线效应引起的反射;退耦电容不合适引起的电压降低;高电感的电源线,振荡器和锁相环电路;开关电源;线形调整器不稳定性所引起的大容性负载;磁盘驱动器。
这些问题由电耦合和磁耦合共同产生。电耦合的产生是由于相邻讯号和电路的寄生电容和互感所引起,而磁耦合的形成是由于相邻的讯号线形成辐射天线所导致。如果辐射干扰足够强的话,将会导致能够摧毁其它系统的EMI问题。
当高速DSP系统中的噪音无法根本消除时,则应该将其减到最小。电子零组件内部都有噪音,故仔细选择组件特性,并选用适当的组件至关重要。除了正确选择组件外,还有两种通用的技术,即PCB布线和回路退耦可协助控制系统噪音。一个优秀的PCB布线将降低噪音通道产生的可能性。另外,还减少了能够传播到印刷线和电流回路上的辐射,退耦可避免相邻电路产生的噪音影响。最好的方法是从源头上滤除噪音,不过也可以使相邻的电路对噪音不感应或消除噪音的耦合通道。以下将讨论几种可解决由系统噪音和EMI引发之常见问题的技术。
保持最短的电流回路
低速讯号电流沿阻抗最小,即最短的路径返回源端。而高速讯号则是沿电感最小的路径返回:这样的最小的回路面积位于讯号线下方,如图1所示。
图1:高速讯号与低速讯号电流的比较。
因此,高速讯号设计目标之一就是为讯号电流提供最小的电感回路。这可以利用电源平面和地平面来实现。电源平面透过形成自然的高频退耦电容将寄生电感降到最小。而地平面形成一个屏蔽面,即众所周知的镜像平面,能够提供最短的电流回路。
一种有效的PCB布线方法就是将电源平面和地平面靠在一起。这样形成了高平面电容和低阻抗,有利于降低噪音和辐射。为了屏蔽,最好的选择是:关键讯号最好布到靠近地平面一边,而其余的则应靠近电源平面一侧。
在高速视讯系统中,保持回路短的目的意味着视讯地不能被隔离。而必须被隔离的音讯地,绝不能在数据输入点处短接到数字地上,如图2所示。
图2:音讯地隔离。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉