针对传统主题模型忽略了微博短文本和文本动态演化的问题,提出了基于微博文本的词对主题演化( BToT)模型,并根据所提模型对数据集进行主题演化分析。BToT模型在文本生成过程中引入连续的时间变量具体描述时间维度上的主题动态演化,同时在文档中构成主题共享的“词对”结构,扩充了短文本特征。采用Gibbs采样方法对BToT参数进行估计,根据获得的主题一时间分布参数对主题进行演化分析。在真实微博数据集上进行验证,结果表明,BToT模型可以描述微博数据集中潜在的主题演化规律,获得的困惑度评价系数低于潜在狄利克雷分配( LDA)、词对主题模型(BTM)和主题演化模型(ToT)。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !