网络安全态势要素选取的质量对网络安全态势评估的准确性起到至关重要的作用,而现有的网络安全态势要素提取方法大多依赖先验知识,并不适用于处理网络安全态势数据。为提高网络安全态势要素提取的质量与效率,提出一种基于属性重要度矩阵的并行约简算法,在经典粗糙集基础上引入并行约简思想,在保证分类不受影响的情况下,将单个决策信息表扩展到多个,利用条件熵计算属性重要度,根据约简规则删除冗余属性,从而实现网络安全态势要素的高效提取。为验证算法的高效性,利用Weka软件对数据进行分类预测,在NSL-KDD数据集中,相比利用全部属性,通过该算法约简后的属性进行分类建模的时间缩短了16. 6%;对比评价指标发现,相比现有的三种态势要素提取算法(遗传算法( CA)、贪心式搜索算法(CSA)和基于条件熵的属性约简(ARCE)算法),该算法具有较高的召回率和较低的误警率。实验结果表明,经过该算法约简的数据具有更好的分类性能,实现了网络安全态势要素的高效提取。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !