针对传统正则化超分辨率( SR)重建模型中,正则化参数选择过大会使重建结果模糊,导致边缘和纹理等细节丢失,选择过小模型去噪能力又不足的问题,提出一种基于结构张量的双正则化参数的视频超分辨率重建算法。首先,利用局部结构张量对图像进行平滑区域和边缘的检测;然后,利用差异曲率对全变分(TV)进行先验信息加权;最后,对平滑区域和边缘采用不同的正则化参数进行超分辨率重建。实验数据显示提出的算法将峰值信噪比( PSNR)提高了0.033 -0. 11 dB,具有较好的重建效果。实验结果表明:该算法能够有效地提升低分辨率(LR)视频帧重建效果,可应用于低分辨率视频增强、车牌识别和视频监控中感兴趣目标增强等方面。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !