针对传统的旅游路线推荐算法推荐准确率不高的缺陷,提出一种基于兴趣点( POI)流行度和用户兴趣偏好的个性化旅游路线推荐( PTIR)算法。首先通过分析得到用户真实的历史旅游足迹;然后根据用户在每个景点的逗留时间提出基于时间的用户兴趣偏好;最后在给定的旅行时间限制、起点和终点下,设计最优旅游路线计算方法。在Flickr社交网站的真实数据集上进行实验,结果显示,相比传统的只考虑POI流行度的算法,该个性化旅游路线推荐算法的准确率和召回率都有较大提升;相比只考虑用户兴趣偏好的算法,该个性化旅游路线推荐算法的准确率和召回率也有所提高。实验结果表明综合考虑POI流行度和用户兴趣偏好能使路线推荐得更准确。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !