针对BP神经网络方法制约短期电力负荷预测精度的问题,提出一种基于迭代误差补偿的核极端学习机( KELM-IEC)预测模型。首先,建立短期电力负荷预测模型的输入指标体系,选择月份、日期、星期、周数、是否为节假日、日平均气温、前一日的最大负荷量等影响电力负荷的7个因素作为预测模型的输入;其次,基于新型神经网络模型——核极端学习机( KELM),建立负荷预测模型,引入支持向量机(SVM)的核函数映射作为极端学习机(ELM)的隐含层节点映射,有效结合ELM结构简单、训练简便与SVM泛化能力强的优势,提高负荷预测精度;最后,基于时间序列预测中迭代误差补偿(IEC)技术,建立IEC模型,再次利用KELM对负荷预测模型的预测误差进行学习,从而对预测结果进行补偿和修正,进一步减小模型预测误差,提高预测性能。采用两组实际电力负荷数据进行仿真实验,其中,KELM-IEC模型与BP神经网络模型相比,平均绝对百分误差(MAPE)分别降低了74. 3g%和34. 73%.最大绝对误差(ME)分别降低了58. 34%和39. 58%;同时与KELM模型相比,平均绝对百分误差分别降低了18。60%和4.29%,最大绝对误差分别降低了0. 08%和11. 21%,说明误差补偿策略的必要性。实验结果表明,KELM-IEC预测模型能够有效地提高短期电力负荷预测的精度,有利于改善电力系统的计划、运营和管理,保障生产和生活用电,提高经济效益和社会效益。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !