什么是pn结的电容效应

电子常识

2632人已加入

描述

PN结介绍

采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结(英语:PN junction)。PN结具有单向导电性,是电子技术中许多器件所利用的特性,例如半导体二极管、双极性晶体管的物质基础。

PN结

PN结的形成

PN结是由一个N型掺杂区和一个P型掺杂区紧密接触所构成的,其接触界面称为冶金结界面。

在一块完整的硅片上,用不同的掺杂工艺使其一边形成N型半导体,另一边形成P型半导体,我们称两种半导体的交界面附近的区域为PN结。

在P型半导体和N型半导体结合后,由于N型区内自由电子为多子空穴几乎为零称为少子,而P型区内空穴为多子自由电子为少子,在它们的交界处就出现了电子和空穴的浓度差。由于自由电子和空穴浓度差的原因,有一些电子从N型区向P型区扩散,也有一些空穴要从P型区向N型区扩散。它们扩散的结果就使P区一边失去空穴,留下了带负电的杂质离子,N区一边失去电子,留下了带正电的杂质离子。开路中半导体中的离子不能任意移动,因此不参与导电。这些不能移动的带电粒子在P和N区交界面附近,形成了一个空间电荷区,空间电荷区的薄厚和掺杂物浓度有关。

在空间电荷区形成后,由于正负电荷之间的相互作用,在空间电荷区形成了内电场,其方向是从带正电的N区指向带负电的P区。显然,这个电场的方向与载流子扩散运动的方向相反,阻止扩散。

另一方面,这个电场将使N区的少数载流子空穴向P区漂移,使P区的少数载流子电子向N区漂移,漂移运动的方向正好与扩散运动的方向相反。从N区漂移到P区的空穴补充了原来交界面上P区所失去的空穴,从P区漂移到N区的电子补充了原来交界面上N区所失去的电子,这就使空间电荷减少,内电场减弱。因此,漂移运动的结果是使空间电荷区变窄,扩散运动加强。

最后,多子的扩散和少子的漂移达到动态平衡。在P型半导体和N型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为PN结。PN结的内电场方向由N区指向P区。在空间电荷区,由于缺少多子,所以也称耗尽层。

pn结的电容效应

PN结的电容效应限制了二极管三极管的最高工作效率,PN结的电容效应将导致反向时交流信号可以部分通过PN结,频率越高则通过越多。

二极管,三极管反向的时候,PN结两边的N区和P区仍然是导电的,这样两个导电区就成了电容的两个电极。从而构成PN结的电容效应。

为了减小这个电容,会减小PN结面积或增加PN结厚度,并且一般用势垒电容,扩散电容来等效。

PN结的电容效应——扩散电容

PN结正向导电时,多子扩散到对方区域后,在PN结边界上积累,并有一定的浓度分布。积累的电荷量随外加电压的变化而变化,当PN结正向电压加大时,正向电流随着加大,这就要求有更多的载流子积累起来以满足电流加大的要求;而当正向电压减小时,正向电流减小,积累在P区的电子或N区的空穴就要相对减小,这样,当外加电压变化时,有载流子的向PN结“充入”和“放出”。,PN结的扩散电容CD描述了积累在P区的电子或N区的空穴随外加电压的变化的电容效应。

CD是非线性电容,PN结正偏时,CD较大,反偏时载流子数目很少,因此反偏时扩散电容数值很小。一般可以忽略。

PN结

PN结的电容效应——势垒电容

在一定条件下,PN结显现出充放电的电容效应。不同的工作情况下的电容效应,分别用势垒电容和扩散电容予以描述。

势垒电容CB

势垒电容CB描述了PN结势垒区空间电荷随电压变化而产生的电容效应。PN结的空间电荷随外加电压的变化而变化,当外加电压升高时,N区的电子和P区空穴进入耗尽区,相当于电子和空穴分别向CB“充电”,如图(a)所示。当外加电压降低时,又有电子和空穴离开耗尽区,好像电子和空穴从CB放电,如图(b)所示。CB是非线性电容,电路上CB与结电阻并联。在PN结反偏时结电阻很大,CB的作用不能忽视,特别是在高频时,它对电路有较大的影响。

PN结

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分