获取满足全局优化目标的资源分配策略,是影响云环境中基于服务的软件系统(service-based software system,简称SBS)运行时优化效果的关键.然而,由于SBS内部复杂的业务逻辑关系和云环境中的资源约束,现有分配方法无法得到最优资源分配量.以满足SLA约束和最小化资源成本为目标,根据不同资源状态对应不同组件服务性能的特点,将组件服务可能的资源分配量、相应性能及成本转换为备选逻辑服务集,进而提出了一种云环境中基于服务选取的SBS资源优化分配模型,并设计了一种求解模型的混合遗传算法,算法采用整数编码以提高求解效率,并在选择算子中引入了精英保留策略,从而保证收敛到全局最优解.为提高遗传算法的局部搜索能力、加快收敛速度,以局部搜索策略改进了标准变异算子.实验验证了所提出的资源优化分配模型和求解算法的有效性,并表明:与分支定界法及精英保留策略遗传算法相比,混合遗传算法能够在较大规模的问题上快速获得具有较低资源成本的资源分配策略.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !