针对传统卷积神经网络(CNN)为获得高准确率不断堆叠卷积层、池化层致使模型结构复杂、训练时间长且数据处理方式单一的问题,提出改进胶囊网络优化分层卷积的亚健康识别算法。首先,对原始振动数据进行小波降噪和小波包降噪两种数据处理,更妤地保留原始信号中对亚健康识别有用的信息;其次,CNN采用分层卷积的思想,并行3个不同尺度的卷积核,多角度地进行特征提取;最后,将卷积核提取的特征输入到剪枝策略的胶囊网络中进行亚健康识别,改进的胶囊网络在保证准确率的冋时加快亚健康识别时间,解决CNN结构过于复杂以及识别效果不佳的问题。实验结果表明,提岀算法识别准确率高且识别时间较少。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !