针对现有表情识别方法中网络泛化能力差以及网络参数多导致计算量大的问题,提出一种利用小尺度核卷积的人脸表情识别方法。采用多层小尺度核卷积块代替大卷积核减少参数量,结合最大池化层提取面部表情图像特征,利用 Softmax分类器对不同表情进行分类,并在相同感受野下增加网络深度避免特征丢失。实验结果表明,与FER2013eod、 DNNRL等方法相比,该方法的人脸表情识别案更高,能有效实现人脸表情的准确分类。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !