跨项目缺陷预测( CPDP)利用来自其他项目的缺陷数据预测目标项目的缺陷情况,为解决以往缺陷预测方法面临的训练数据受限问题提供了一个新的视角。训练数据的质量将直接影响跨项目缺陷预测模型的性能,因此,需尽可能选择与目标项目更相似的数据用于模型的训练。利用PROMISE提供的34个公开数据集,从训练数据选择方面,分析了四种典型的相似性度量方法对跨项目预测结果的影响以及各种方法之间的差异。研究结果表明:使用不同的相似性度量方法选出的训练数据质量不同,其中余弦相似性与相关系数两种方法效果更好,且最大改进比例达到6. 7%;同时,根据目标项目的缺陷率,发现余弦相似性更适合于缺陷率高于0.25的项目。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !