针对人脸表情识别背景复杂性以及表情识别的鲁棒性问题,基于Dempster-Shafer( DS)证据理论,提出了一种融合主动形状模型(ASM)差分纹理特征和局部方向模式(LDP)特征的人脸表情识别方法。ASM差分纹理既能有效地屏蔽个体人脸之间的差异,又能保留人脸表情信息。LDP特征通过计算8个方向的边缘响应来对图像进行编码,因此具有很强的抗噪能力,能够捕捉人脸因表情而产生的细微变化。在DS证据理论融合时,针对不同的特征对表情的识别率,分别用不同的权重系数来计算概率分配值。通过对JAFFE和Cohn-Kanade混合数据库进行实验,表情识别的平均识别率为97. 08%,比单特征LDP高出一个百分点,有效地提高了表情识别率和鲁棒性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !