为了解决局部方向模式(LDP)在人脸特征提取过程中采用固定的平均分块方式,不能自适应突出不同样本特征的这一问题,提出一种基于兴趣点定位的改进LDP人脸特征提取方法。兴趣点所在位置特征信息丰富,其根据不同图像自动分布,可以突出不同图像的不同特点。首先定位人脸图像的加速鲁棒特征( SURF)特征点,并通过K-means聚类算法优化兴趣点的数量,确定兴趣点位置;之后以每个兴趣点作为中心建立LDP特征提取窗口,计算其4方向LDP编码,得出图像的特征向量;最后,采用支持向量机(SVM)对人脸进行识别分类。使用该改进算法分别在FERET和Yale数据库中进行实验,并与原始LDP、4方向的LDP方法(4-LDP)、融合PCA与LDP的特征提取算法( PCA-LDP)进行了比较,实验结果表明,所提出的特征提取方法在保证系统实时性的同时,可以有效提高人脸识别的准确率与稳定性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !